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Abstract

This working paper presents a method for decomposing products into their underlying value
chains using artificial intelligence, specifically large language models (LLMs). Rather than gen-
erating data from model memory, we employ LLMs as analytical tools that read, reason, and
structure information obtained through automated web search, web scraping, and literature
review. Guided by a traceability principle, this approach mimics the workflow of a human
researcher: identifying, extracting, summarizing, and cross-referencing data to construct trans-
parent and verifiable value-chain representations. The method proceeds in iterative steps: (0)
selecting a value chain anchor product; (1) distinguishing technology types within each system
or material; (2) mapping these types to 6-digit HS codes; (3) estimating their prevalence and
assigning a prevalence weight; (4) decomposing each type into its constituent parts; and (5) as-
signing cost-share weights relative to other parts, labor, inputs, and machinery. This recursive
decomposition yields a hierarchical technology graph linking technical systems and materials
from end products back to raw inputs. The resulting graph supports multiple aggregation levels
— from individual technology types and categories to trade-classified HS codes — enabling value
share estimation through path-weight calculations at varying levels of granularity. These aggre-
gation layers make it possible to transition seamlessly from engineering-level product structures
to trade-level representations of global production systems. We complement this with firm,
talent, and intellectual property mappings based on registry, web, and patent data to locate
actors within the value chain. Altogether, the framework provides a scalable, transparent, and
data-driven approach for reconstructing global value chains from open information sources.
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1 Introduction

This working paper presents a method for automating the reconstruction of value chains using large
language models (LLMs) in combination with automated web search and web scraping. The method
iteratively decomposes products into types of varying prevalence and subsequently decomposes each
type into constituent parts with varying cost shares, repeating this process until upstream raw ma-
terials are reached. Each product type is mapped to trade codes and other relevant industrial
taxonomies. Because the resulting structure is represented as a graph (with trade codes as at-
tributes, among others) it can be analyzed at different levels of aggregation. For example, analysis
at the 6-digit HS code level provides a more aggregated view than analysis at the individual product
level. By aggregating the graph at the level of trade codes using these attributes, the approach can
be connected to an existing body of work that represents value chains using trade classifications.
For instance, (Rosenow and Mealy, 2024), (Rosenow et al., 2025), and (World Bank Group, 2024)
construct datasets of value chains based on 6-digit HS codes, grouping underlying products into
four categories: raw materials, processed materials, subcomponents, and end products. Similarly,
(Fetzer et al., 2024) uses language models to represent production networks through input-output
relationships, with 6-digit HS codes serving as the entities being related to one another.

The primary advantage of using 6-digit HS codes as a representation of value chains lies in
data availability, as most international trade is recorded in HS codes when products cross bor-
ders. However, this approach comes at a cost. (Rosenow and Mealy, 2024) identify three key
shortcomings:

(i) products identified as inputs within a particular value chain often have multiple alternative
use cases;

(ii) HS codes represent classes of heterogeneous products rather than individual products; and
(iii) trade indicators capture gross trade flows rather than value-added contributions.

We identify at least two additional reasons why value-chain representations based on trade codes
are of limited use, particularly in generic frameworks such as (Fetzer et al., 2024), which attempt
to map input—output relationships between all HS codes within a single network.

(iv) HS codes are not designed to represent hierarchies adequately.

(v) The HS system relies extensively on negatively defined categories (“not elsewhere classified”),
which create residual categories that may contain highly heterogeneous products. In generic
networks such as (Fetzer et al., 2024)’s AIPNET, it is unclear how these categories could be
used meaningfully, as their interpretation depends heavily on contextual information that lies
outside the HS classification system itself.

Our approach aims to address the issues identified under (ii), (iv), and (v) by constructing value
chains at higher granularity at the product level and aggregating to the trade-code layer only when
trade data analysis is required. In doing so, we work toward making the various confounding factors

!The system relies heavily on categories ending in “and parts thereof,” meaning that a product and its inputs
are often classified under the same heading. Another form of hierarchical conflation occurs when products are
distinguished at the 6-digit level under separate 4-digit headings, while their parts are grouped together under a
single shared 4-digit category. For example, the 6-digit codes under 87.11 classify motorcycles of different types,
those under 87.12 classify bicycles and tricycles, and those under 87.13 classify carriages for disabled persons. While
different types of cycles are thus distinguished, the parts of motorcycles (87.11), bicycles (87.12), and wheelchairs
(87.13) are all grouped together under 87.14 with very limited scope for distinguishing input relationships across
different types of cycles.



introduced by aggregation explicit, allowing some of the limitations of trade-based representations
to be systematically tracked. The high level of product detail further enables firms and intellectual
property to be linked directly to specific positions within the value chain, without relying exclusively
on abstract classifications such as NACE, ISIC, or HS codes.

The remainder of the paper is structured as follows. We begin with a general discussion of how
LLMs are used in combination with web search. We then describe the algorithmic steps involved
in constructing the technology graph, followed by the mapping of additional information such as
firms and intellectual property. Next, we outline the aggregation methods across different levels of
analysis. Finally, we discuss limitations and directions for future work.

2 Value Chain Decomposition Approach

2.1 General note on how we use large language models

We do not generate value chains from a language model’s “memory.” Instead, we use the model’s
ability to read, write, summarize, reason, and transform unstructured inputs into structured out-
puts to mimic the process a human researcher would follow. This process involves conducting
literature reviews through automated web search, retrieving relevant sources via lawful and gentle
web scraping, excerpting and storing useful information in vectorized form with references to the
originals, querying this condensed knowledge as needed, and maintaining full traceability of sources
through citations.

We refer to the entire procedure simply as “web search” and to the approach of using language
models to transform targeted information that we provide to the model as “traceability principle.”
This web search draws on publicly available reports, websites, articles, patents, product brochures,
and marketplace information (currently exclusively from Alibaba). None of this data is used for
training purposes; neither by us nor by third parties. All models we employ are configured to
prohibit retraining.

We aim to prevent the language models from generating fabricated information. To this end,
we restrict their use to information identified through our bespoke web search process.

However, some tasks inherently require further aggregation of already aggregated information.
For example, when estimating the cost shares of system components (see Step 5), we provide
excerpts from various sources about the components in question, along with aggregated price and
prevalence data for different component types. The model is then instructed to assign a weight
between 0 and 1 to each component, such that all weights sum to 1.

This process is not random, but the only trace of the model’s reasoning is the summary we
record explaining why a particular weight was assigned. These weights can therefore be consid-
ered estimates produced by a black-box model based on explicit qualitative evidence. By analogy,
the procedure resembles asking a subject-matter expert to assign weights based on the provided
information: the results are not fully deterministic but can be expected to fall within a reasonable
range.

2.2 Step 0: Select a value chain anchor product.

In the current version of the algorithm, this product can be considered either a material (e.g., stain-
less steel) or a technical system (e.g., a solar PV system). By technical system, we mean an ensemble
of components that together produce effects by design (see the definition of artificial instrumen-
tal systems in (Schollmeyer and Tamuzs, 2019)). For pragmatic reasons, we distinguish technical
systems from materials by assuming that a technical system can be mechanically disassembled



into its functionally distinct parts, whereas materials cannot be separated into such components
in any meaningful way by mechanical means alone, but instead require non-mechanical processing
to isolate their functionally distinct parts. This distinction is pragmatic rather than ontological; it
simply reflects the way these terms are typically used in everyday technical language. We will refer
to both technical systems and materials collectively as technologies, since our analysis considers
them solely in instrumental terms.

2.3 Step 1: Disambiguate the value chain anchor product (technical system or
material) into its most prevalent types.

Before breaking down a system (or material) into its parts, we first need to make sure it is clearly
defined. For example, stainless steel exists in several forms. Austenitic stainless steel contains
nickel, while ferritic stainless steel may contain little or no nickel.

The same idea applies to solar PV systems, which can be grid-tied, off-grid, or hybrid. These
three types share some components, like PV modules, but differ in others; for instance, only hybrid
and off-grid systems include battery banks.

To make this distinction clear, we will use technology category to refer to the general class
(e.g., stainless steel, solar PV system), and technology type for a specific version within that
category (e.g., ferritic stainless steel, off-grid solar PV system). This distinction is crucial for the
way we construct the technology graph.

Note that the above distinction of solar PV systems into grid-tied, off-grid, and hybrid is logically
complete but not the only meaningful way to classify solar PV systems. In fact, searching for types
of solar PV systems reveals many alternative classifications that are not based on grid-tiedness but
rather on features such as transportability or compactness. Following the traceability principle,
our algorithm is instructed to base the distinction of types on what is found in the literature. In
cases where conflicting classifications occur, we apply a ranked list of property classes to determine
which distinction takes precedence (with color being the least useful category).

Furthermore, we use the web search approach to enrich information about these types in a
targeted manner. For example, we search for and extract details on each technology type’s function,
mechanism, specifications, core components, core distinguishing features, and price distribution (the
latter based on reference products found on Alibaba).

2.4 Step 2: Map the technology types to their corresponding 6-digit HS codes.

We map only technology types to HS codes, as we consider these to be sufficiently well-defined
products to qualify as tradable goods. Each technology type is assigned to a 6-digit HS code.

Our algorithm follows the General Rules for the Interpretation of the Harmonized System
(World Customs Organization, 2025), proceeding from a 2-digit to a 4-digit, and then to a 6-digit
pre-selection, before ultimately determining the final 6-digit HS code. The reasoning process is
made explicit, with references to the relevant General Rules where appropriate.

2.5 Step 3: Estimate the prevalence of each technology type

To assess the importance of each technology type relative to others, we apply the web search
approach described above to estimate the prevalence of each type. This information is then used
to assign a weight between 0 and 1 to each type, relative to the system or material it represents.
These estimates are generated by a language model based on the available prevalence information
for each type. For any given system or material, the prevalence weights of all associated types must
sum to 1.



For example, grid-tied solar PV systems have been deployed significantly more frequently than
off-grid or hybrid systems. Consequently, their prevalence weight is consistently higher than that
of off-grid or hybrid systems. That said, each model run yields slightly different values, since these
are aggregated estimates based on other aggregated data. One way to address this uncertainty is
to run the estimation process multiple times to bootstrap a confidence interval.

2.6 Step 4: Decompose each technology type into its fundamental parts (i.e.,
systems and materials)

Once the technology types have been clearly distinguished, each is decomposed into its fundamental
parts, which may themselves be systems or materials serving distinct functions.

The decomposition procedure differs depending on whether the technology type represents a
system or a material, as the rules governing decomposition vary in each case. For every identified
part, we also extract additional information, including its functions, mechanisms, and specifications.

These parts are referred to as technology categories, since they are defined by function, and a
given function may be realized in multiple ways through different technology types.

2.7 Step 5: Estimate the cost share of each part relative to other parts, labor,
additional inputs, and machinery

To assess the relative importance of each part, we estimate its cost share in relation to the other
parts, as well as to the estimated costs of labor, additional inputs, and machinery. This information
is identified through the web search approach described above.

The cost-share weights for each component and for the additional cost categories (labor, addi-
tional inputs, and machinery) represent highly aggregated estimates based on secondary aggregates.
A language model produces these estimates using information about each part, available information
on labor, machinery, and input costs (as found in the literature), the prevalence of the respective
part types, and their price distributions, where identifiable, for example, on Alibaba. The model
is instructed to assign a weight between 0 and 1 to each cost category, such that all weights sum
to 1.

2.8 Repetition of Steps 1 to 5

For every identified part, we repeat Steps 1 to 5:

—_

) distinguishing its types,

) mapping those types to 6-digit HS codes,
) estimating their prevalence,
)
)

=W N

decomposing each type into its fundamental parts, and
estimating the cost shares of each part relative to the corresponding labor, machinery, and
additional input costs.

t

This recursive process is applied five times. In the final iteration, each decomposition is forced
to resolve into materials. The decomposition of a branch stops earlier if the identified material type
is no longer the result of material processing but can instead be considered a raw material input.
As a result, we obtain a graph with paths of the following structure:
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Figure 1: Recursive decomposition: category (anchor product) < types < categories +— types
(repeated). The technology-type nodes are assigned HS codes. Here, we schematically distinguish
between different HS codes using labels such as HS-1, HS-2, etc.

3 Mappings

3.1 Company Mappings
3.1.1 By taxonomy such as NACE or ISIC

To map companies to their position in the value chain, different procedures can be applied depending
on data availability and the required level of precision. Business registries provide an almost
complete list of existing companies. Depending on the practices of national statistical agencies,
these companies are often classified according to their main activities using taxonomies such as
NACE or ISIC. By mapping the products in the value chain to these taxonomies — similarly to how
they are mapped to 6-digit HS codes — companies can then be linked to a version of the value chain
aggregated at the level of detail permitted by the taxonomy.

3.1.2 By Product Offering

The highest-resolution approach to mapping companies to their position in the value chain is
through their product offerings. To achieve this mapping for a given region, we conduct targeted,
regionally constrained web searches for each item resulting from Step 4 (i.e., the technical systems
and materials that constitute specific technology types) to identify companies that sell versions of
these items.

This process has at least two limitations. First, we can only identify companies that maintain a
web presence. Second, the information on company websites must be taken at face value, meaning
that any assessment of whether a company is a producer, reseller, or service provider must rely
solely on that information.

The advantage of this approach is that even small producers can be identified, provided they
maintain an active website.



3.2 Talent Mappings

Similar to how we identify companies involved in the production or distribution of products in the
value chain through web search, we identify talent by searching for related patents, publications, and
research profiles. This approach is useful for regional stakeholder identification and engagement.

3.3 IP Mappings

To identify intellectual property, we follow a similar process. For each element in the value chain,
we conduct targeted patent searches to map IP holders to their corresponding positions within the
value chain.

4 Value Shares

4.1 Highest resolution (technology categories and technology types)

The value share of an item (technology type or technology category) in the value chain is the sum of
the products of all path weights along the direct routes from the item to the root anchor product.

Formally, for a directed acyclic graph G = (V, E) with normalized edge weights w,,,, the value
share of item ¢ relative to the root r is defined as:

Vi= Y]] ww

pEP(i,r) (u,0)Ep
Where:

G=(V,E) directed acyclic graph representing the value chain, where V is the set of nodes
(items) and E is the set of directed edges connecting them

Vi value share of item ¢ in the value chain

T the root (a unique node representing the anchor product)

P(i,r) set of all direct acyclic paths from item ¢ to root r

(u,v) a directed edge connecting two nodes along a path p, such that (u,v) € E

Wy normalized edge weight for (u,v): either prevalence (type—category) or cost share

(category—type), with outgoing edge weights from each node summing to 1
H(u,v)ep Wy product of weights along path p
peP (i) sum across all directed acyclic paths from ¢ to r

4.2 First aggregation (technology types only)

On the graph’s highest resolution level, it does not matter whether we are looking at technology
types or technology categories. However, if we want to focus only on technology types — that is,
concrete products that have been mapped to HS codes — we need to “jump” over the technology
categories (see Figure 1) and convert the graph into the more aggregated form:
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Figure 2: Flattened types-only graph: category (anchor product) < types < types (repeated).
Each technology-type has assigned an HS code. We schematically distinguish between different HS
codes using the same labels as in Figure 1.

In this flattened representation, every two-step connection (technology type — technology cate-
gory — technology type) is replaced by a single composite edge that directly connects one technology
type to another.

4.2.1 Composite edge weight

Fach composite edge weight W, is defined as the sum of all possible two-step connections through
intermediate technology categories C linking technology type T, to technology type Tj:

War =Y Tacoch

CeC(a,b)
Where:
TaC the prevalence weight, representing how commonly technology type T, occurs in category
C
och the cost-share weight, representing the relative cost contribution of C' in constructing T}

C(a,b) the set of all technology categories that connect Ty, and Ty

4.2.2 Value share of a technology type

Because the root anchor product r is a technology category, we introduce a terminal weight ¢ to
represent the connection from a technology type ¢ to the root. The value share of a technology type
T; is then calculated as the sum of the products of all composite weights along every direct path
leading from 7T; to the root anchor product, multiplied by the terminal weight of the final node in
the path:

V; = Z H Wy Pterminal(p)

peEP(Ti,r) \(w,v)€p

Where:

P(T;, ) the set of all paths from technology type T; to the root anchor product r

W the composite prevalence—cost-share weight between nodes u and v

Pterminal(p)  the terminal weight connecting the last technology type in path p to the root anchor

product

10



4.3 Second aggregation (HS Codes)

Since every technology type has an associated 6-digit HS code, we can aggregate the technology-
type graph (Figure 2) into an HS code graph (Figure 3). In this representation, each HS code node
encompasses one or more technology types that share the same classification.

Conceptually, this second aggregation layer replaces all individual technology types within an HS
code with a single node representing that code. The resulting graph maintains the same hierarchical
structure as before, but now the nodes represent HS codes instead of individual technology types:

Technology category
(anchor product)

Figure 3: HS code aggregation graph: category (anchor product) < HS codes < HS codes (re-
peated). The schematic HS codes are the same as in Figure 1 and Figure 2.

4.3.1 Composite edge weights between HS codes

Fach edge between two HS codes H, and Hj, is defined by aggregating over all possible connections
between the technology types associated with these codes. Let T'(H,) denote the set of technology
types belonging to HS code H, and similarly T'(Hy) for HS code Hp.

The composite HS-to-HS weight Wgs is given by:

Wa'= > > Wy
i€T(Ha) jET(Hy)
where W;; are the type-to-type composite weights defined in the previous section. This formu-
lation ensures that every indirect connection between the technology types grouped under H, and
Hy contributes to the aggregated HS-level relationship.

4.3.2 Value share at the HS code level

Analogous to the technology-type graph, the value share of an HS code H; is defined as the sum
of the products of HS-level composite weights along all direct paths leading from H; to the root
anchor product:

‘/iHS = Z H WE)S Pterminal(p)
PEP(H;r) \(u,v)€p

Where:
P(H;,r) the set of all paths from HS code H; to the root anchor product r
whHs the aggregated HS-to-HS edge weights

Pterminal(p)  the terminal weight connecting the last HS code in the path to the root category

11



This second aggregation produces a trade-level representation of the value chain that is directly
compatible with international trade data.

By collapsing multiple technology types into HS codes, we can analyze and compare value-chain
structures across countries using trade data, while still preserving the internal logic of the original
technology-type graph.

5 Limitations

5.1 Data and Source Limitations

The method inherits several biases and uncertainties from the uneven distribution of technical and
market information across domains. The identification of necessary parts of technical systems,
their technology types, relative prevalence, and component-level cost shares depends heavily on the
availability of reports, patents, articles, and web documentation. The presence and quality of such
information vary widely between technologies. Where explicit evidence is missing, estimates cannot
be inferred from traceable source texts but are potentially entirely generated by the language model
itslef, introducing additional uncertainty.

A further source of bias arises from the reliance on a single commercial marketplace (currently
Alibaba) for price references. This concentrates evidence in one geography and supplier type,
skewing the estimated price distributions toward visible, export-oriented producers. Firm-level
mapping suffers from a similar coverage limitation: companies without a digital footprint, or with
ambiguous website descriptions, are underrepresented or misclassified, reducing representativeness
in the reconstructed production landscape.

Marketplace price data, while useful as one of the inputs for first approximations, also risks
conflating prices with costs. Listed prices embed markups, logistics costs, and policy distortions that
make them poor proxies for actual production costs. Finally, both price and prevalence information
are time-sensitive. Without explicit timestamps and regular re-sampling, the resulting technology
graphs may lag behind real-world industrial dynamics and fail to reflect recent innovation or cost
evolution.

5.2 Structural and Taxonomic Limitations

The recursive decomposition is currently capped at five levels, a pragmatic constraint to control
the exponential growth of the knowledge graph. However, this fixed depth may truncate deeper or
more complex production hierarchies.

A related issue concerns the ambiguity of technology typing. Technology types can legitimately
be distinguished along multiple orthogonal dimensions, such as functional principle, material com-
position, design architecture, or intended application. No single rule ensures that one dimension
prevails across all cases, making consistent disambiguation difficult. Moreover, the boundary be-
tween categories and types is itself fluid: in practice, the model must judge how specific categories
should be before type distinctions appear. Our experiences show that both the choice of model ar-
chitecture and the number of textual sources influence how this partitioning is carried out, leading
to possible variability across runs.

Additional structural uncertainty arises from divergent classification systems. Literature, engi-
neering practice, and trade nomenclature often impose conflicting hierarchies. Even when the Har-
monized System (HS) mapping follows the General Rules for Interpretation (GRI), many-to-one
and borderline cases at the 6-digit level inject noise and inconsistency, partly reflecting ambiguities
already present in the trade data itself.
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5.3 Methodological and Epistemic Limitations

At the methodological level, the workflow remains partly stochastic. The language model’s internal
weighting of textual evidence means that both prevalence and cost-share estimates can vary between
runs. These differences reflect a combination of random sampling, prompt sensitivity, and retrieval
variation. One way to address this limitation is through a bootstrap procedure, running the same
query multiple times to construct empirical confidence intervals for each estimated weight.

Black-box behavior also extends to higher-order decisions such as the generation of technology
categories and type distinctions. These outputs depend strongly on model architecture, request
limits for textual inputs, and specific prompt formulations, all of which may shape the inferred
technological taxonomy.

Ensuring full traceability across recursive model runs adds another layer of difficulty. Maintain-
ing a provenance ledger that captures source URLs, timestamps, extraction snippets, and model
versions is computationally and architecturally intensive, particularly when applied to large-scale
reconstructions.

Finally, the model aspires to approximate a global representation of technological organization,
but this ideal is inherently limited. Cost structures and technology types vary regionally due to
path dependencies, industrial specialization, and regulatory environments. Any global weighting
scheme therefore smooths over real geographic heterogeneity, and the resulting system should be
interpreted as an approximate abstraction rather than a precise empirical map.

6 Future Work

Beyond addressing the limitations discussed above, a promising direction lies in reversing the di-
rection of decomposition. The current algorithm operates in an upstream fashion: it begins with
a final product and traces backward through the pathways that enable its creation. Inverting this
process to generate a downstream graph could be equally valuable. The analytical question would
then shift from “What is X made of?” to “What can be made from X?7

Another line of development concerns the upstream analysis of agricultural and biological prod-
ucts. Such products “grow” rather than being assembled, and therefore require a fundamentally
different logic of decomposition. For instance, asking “What are the fundamental components of
a potato?” does not yield the inputs or processes necessary to cultivate one. We are therefore
developing a complementary algorithmic variant that places greater emphasis on processes rather
than on physical assemblies. It can be expected that combining the two perspectives — the vertical
decomposition suited to machinery and manufactured goods, and the horizontal process-oriented
tracing appropriate for agricultural systems — will offer a more comprehensive and integrated view
of production as a whole.

7 Conclusion

This paper introduced a scalable, language-model-based framework for reconstructing technological
value chains through recursive decomposition. The approach iteratively distinguishes between tech-
nology categories and technology types, tracing upstream to the level of raw materials. Technology
types are mapped to six-digit HS codes, and value shares are derived from normalized prevalence
and cost-share weights. The result is a technology graph that seeks to represent the state of a given
technology, insofar as it can be inferred from available literature and patent information.

13



The graph structure enables aggregation across coarser taxonomies such as HS, NACE, and ISIC
codes, while preserving the flexibility to increase resolution by linking specific, non-aggregated
product types to manufacturers, intellectual property claims, or researchers. In this way, the
framework supports both local productive-capacity mapping (independent of trade data) and global
trade analysis, providing a unified and extensible representation of technological interdependence.
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